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Specular neutron reflectometry has become an established probe of the nanometer scale structure

of materials in thin film and multilayered form. It has contributed especially to our understanding

of soft condensed matter of interest in polymer science, organic chemistry, and biology and of

magnetic hard condensed matter systems. In this paper we examine a number of key factors which

have emerged that can limit the sensitivity of neutron reflection as such a probe. Among these is

loss of phase information, and we discuss how knowledge about material surrounding a film of

interest can be applied to help resolve the problem. In this context we also consider what role the

quantum phenomenon of interaction-free measurement might play in enhancing the statistical

efficiency for obtaining reflectivity or transmission data. [doi:10.1063/1.3661979]

I. INTRODUCTION

Over the past 25 years or so, specular neutron reflectom-

etry (NR) has become established as a valuable probe for

determining the nanometer scale structures lying beneath the

exterior surfaces of hard and soft condensed matter thin films

of interest in physics, chemistry, and biology.1–4 As is well-

known, neutrons are especially sensitive to hydrogen and

atomic magnetic moments, thereby potentially complement-

ing subsurface structural information that can be obtained

from x-ray reflectivity measurements. More specifically, the

scattering length density (SLD) depth profile along the sur-

face normal, averaged over in plane, can be deduced from

specular neutron reflectivity measurements (wavevector

transfer Q normal to the surface). Under nearly ideal condi-

tions, neutron reflectivities as low as 10�8 out to a Q of 0.7

Å�1 from a lipid bilayer membrane have been measured

with a corresponding spatial resolution in the SLD profile of

half a nanometer.5 The SLD profile, in turn, is directly

related to the corresponding material composition distribu-

tion —and if polarized neutron beams are employed, the vec-

torial magnetization depth profile of magnetic materials can

be obtained as well.

Moreover, in specular neutron reflectometry, the phase

can be determined exactly using reference structures, thereby

enabling a first-principles inversion, and thus ensuring a

unique result for the SLD profile.6 The ability to establish an

unambiguous correspondence between reflectivity data and

SLD profile is arguably the most important factor in making

an accurate structure determination. When phase-sensitive

methods are employed, what ultimately limits the accuracy

and spatial resolution of the SLD depth profile are the maxi-

mum attainable range of wavevector transfer Q and the statis-

tical uncertainties in the measured reflected intensities.7

Clearly, by providing higher incident beam fluxes, the con-

struction of advanced neutron sources can help expand the

measurement envelope for specular neutron reflectometry, as

can advances in beam optics (e.g., higher-efficiency polarizing

supermirrors or the development of polychromatic beam

instruments at steady state sources). So too, minimizing the

amount of extraneous incoherent background scattering from

the film substrate and other surrounding material increases the

achievable signal-to-noise ratio. Moreover, since the interfa-

cial roughness within the film itself, or of the supporting sub-

strate, contributes to a fall-off of the reflection signal as well,

efforts to reduce such roughness can also be of significant

benefit. In the first part of this paper, Secs. II through V, we

briefly review the current state of progress, regarding some of

the issues identified above, in applying specular neutron re-

flectometry to structural investigations of thin film systems

and give, as illustration, a recent example of a phase-sensitive

NR study of an organic photovoltaic film system.

Although the success of conventional quantum mechani-

cal theory in describing specular neutron reflection is re-

markable, in ideal circumstances achieving a quantitative

accuracy of the order of a few percent, this does not neces-

sarily mean that the present understanding of the theory or

its formulation is complete. In the second part of this article,

we consider aspects of quantum theory which have not yet

been routinely applied to reflection or transmission measure-

ments of materials. We focus on other features of the quan-

tum measurement process itself. In particular, a possible

alternative approach to performing neutron reflectivity meas-

urements, which involves the quantum phenomenon of

“interaction-free measurement” (IFM), of the type first pro-

posed by Renninger,8 Dicke,9 Elitzur and Vaidman,10 and

realized in rudimentary fashion by Kwiat et al. with visible
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2010.
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light,11 is critically examined. The scheme utilized by Kwiat

et al. optimizes the efficiency for performing an IFM of the

reflectivity (or transmission) by application of the quantum

Zeno effect (which requires polarized photons or neutrons in

their particular scheme). We examine whether an IFM

scheme can lead to a statistically more efficient measurement

of neutron reflectivity.

II. PHASE DETERMINATION AND DIRECT INVERSION

A. General description

It is well-known that diffraction measurements in gen-

eral are subject to an intrinsic ambiguity due to the loss of

phase information which results from measuring a reflected

wave intensity from a single pattern or reflectivity curve as

opposed to being able to directly measure the reflection am-

plitude which contains the phase explicitly. In neutron or

x-ray crystalline powder diffraction over the range of Q nor-

mally covered, the interaction typically is sufficiently weak

that the diffraction can be described accurately within the

Born approximation or kinematical analysis in which a Fou-

rier transform connects the reflection amplitude and SLD

distribution. Here, the periodic nature of the scattering object

helps make it possible to retrieve phase information.12 Alter-

natively, controlled isomorphic substitution of one or more

atomic constituents of the crystallographic unit cell can lead

to multiple diffraction data sets which can then be simultane-

ously analyzed to extract the phase.

Similarly, in specular NR nonunique solutions arising

from loss of phase information are problematical if reliable

complementary information is unavailable to resolve such

ambiguities (see, for instance, Refs.13 and 14 for further dis-

cussion and illustrative examples). However, for NR the pos-

sibility of a non-periodic SLD profile in combination with

the necessity of properly accounting for refractive effects in

the solution of the wave equation (at sufficiently low Q in

the vicinity of the critical angle for mirror reflection)

requires a somewhat different approach in dealing with the

phase problem.

As it turns out, the specular neutron reflection process

(restricting the present discussion to unpolarized neutrons

and nonmagnetic materials) can be described accurately by

solving the one-dimensional Schroedinger wave equation

exactly (which is possible to do piece-wise continuously for

any arbitrarily shaped SLD profile). The exact solution of the

Schroedinger equation can be formulated in terms of a set of

linear algebraic equations relating the reflection and transmis-

sion amplitudes and characterized by a “transfer” matrix con-

taining all the information about the SLD distribution. For

typical neutron reflection studies of the nanometer scale

structure of thin film layered materials, the nuclear interaction

potential can be effectively described in terms of a refractive

index or scattering length density (SLD). If the SLD is real,

with no appreciable imaginary component associated with an

absorptive process (typically the case for most isotopes), then

it can be shown that there is a one-to-one correspondence

between the complex reflection amplitude, measured as a

function of wavevector transfer Q, and the SLD depth profile

that gives rise to it (see, for example, Refs. 15, 16, and 7) (it

is further assumed that the effects of any possible bound

states are negligible). In other words, this isomorphism

ensures a unique relationship between the reflection ampli-

tude and SLD. Consequently, both the direct scattering prob-

lem, i.e., calculating the reflection amplitude from a given

SLD depth profile, and the inverse problem, i.e., deducing the

SLD profile from a specific reflection amplitude curve, are

solvable from a first-principles calculation involving the one-

dimensional Schroedinger equation. For infinite data sets

with no uncertainty, the relationship between reflection am-

plitude curve and SLD profile thus is unambiguous. The

details of this mathematical connection were worked out in

the mid 20th century by Gel’fand, Levitan, and Marchenko

(GLM) and others15 and involve the solution of an integral

equation — or, alternatively, a partial differential equation, as

developed more recently by Sacks.16,17

It was subsequently discovered that the reflection ampli-

tude containing the phase that was needed to perform the

GLM inversion could be recovered from measurements on

multiple composite thin film systems, each consisting of the

common film of interest, the SLD profile of which was

unknown, and a different adjacent reference layer SLD profile

or surrounding medium.18–23 The transfer matrix naturally

separates into a product of two matrices, one corresponding to

the film of interest and the other to the adjacent known refer-

ence. Although direct inversion is possible once the complex

reflection amplitude has been determined, it is also possible to

extract the unique SLD profile of the unknown film by simul-

taneous fitting of the composite system reflectivity data sets

themselves,24 but this process is less direct.

Because true inversion may not be strictly possible in

the presence of appreciable absorption, direct phase-

inversion methods are more limited for x-ray applications.

Nonetheless, significant phase information can be retrieved

if the substrate SLD is tuned by varying the x-ray wave-

length through its absorption edge.25 Leeb et al. have investi-

gated other methods for dealing with absorptive materials.26

In summary, for specular neutron reflection, the complex

reflection amplitude or phase associated with an “unknown”

segment of a composite film structure can be determined

exactly, using reference segments, and a subsequent, first-

principles inversion can be performed, thereby ensuring a

unique result (some examples are given in Refs. 27 and 28).

Thus, the phase-sensitive neutron reflection=inversion pro-

cess results in a real-space picture without fitting or any ad-

justable parameters. However, as will be shown in following

sections, there are other important advantages associated with

the phase-inversion process.

B. Rigorous uncertainty analysis

The accuracy and spatial resolution of the SLD depth

profile retrieved through phase-sensitive reflectivity measure-

ments and direct inversion are ultimately limited by the maxi-

mum Q attainable and the statistical uncertainty in the

measured reflected intensities. The fact that there exists a

one-to-one correspondence between the reflection amplitude

spanning all Q and the SLD profile responsible for it also

makes it possible to perform a mathematically rigorous
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analysis of the effect of these uncertainties on the SLD profile

that is deduced from phase-sensitive neutron reflectivity data.

Figure 1 shows two model composite system reflectivity data

sets for a common Cr=Au=h-lipid=d-lipid membrane system

adjacent to each of two different substrate media (Si and

Al2O3) that serve as references. The reflectivities in each of

the two data sets include a certain amount of statistical error

and both sets are truncated at the same maximum value of Q.

The consequences of the statistical uncertainty in and trunca-

tion of these two reflectivity data sets — as computed accord-

ing to the formalism developed in Ref. 7 — are shown in

Figs. 2 and 3, respectively. Since it is far beyond the scope of

this review to do justice to the power of this statistical analy-

sis of phase-inversion specular NR, the interested reader is

directed to the original paper for a comprehensive treatment.

It is perhaps worth noting here that a gain of a factor of

two in the spatial resolution in the SLD profile is obtained by

performing phase-sensitive NR measurements as opposed to

what is possible with a single, phaseless NR data set trun-

cated at the same maximum value of Q.6

C. Diagnostic for in-plane homogeneity

It has also been found that the imaginary part of the

complex reflection amplitude, which is recovered in the

phase-sensitive measurement process, contains valuable in-

formation about in-plane variations of the SLD on a length

scale comparable to the dimensions of the projected area of

the neutron wave packet.29 The size of the areas of different

SLD in plane relative to the effective neutron wave packet

coherence length can have significant impact on the analysis

of the reflected intensity. If the coherence length is large

compared to the dimensions of in-plane regions of different

SLD, then those variations are effectively averaged over in-

plane insofar as the specular reflectivity is concerned. On the

other hand, if the converse is true and each neutron wave

packet interacts with only a single region of one particular

scattering length density, then the net measured reflected in-

tensity will represent an already weighted, incoherent sum of

the reflected intensities from each different type of area. Not

knowing this information can potentially cause a misinter-

pretation of the reflectivity data and result in an erroneous

analysis.

As it happens, the imaginary part of the reflection ampli-

tude has two symmetric roots associated with the solution of

a quadratic equation. Although only one of these roots has

FIG. 1. Two composite system model reflectivity data sets for a common

Cr=Au=h-lipid=d-lipid membrane system on each of two different surround-

ing media (Si and Al2O3) that serve as references. The reflectivities in each

of the two data sets include a certain amount of statistical error and both sets

are truncated at the same maximum value of Q (the scale is in inverse Ang-

stroms). The resultant effects on the SLD profile as a consequence of the sta-

tistical uncertainty in the reflected intensities and truncated range of Q are

shown in Figs. 2 and 3, respectively — as computed directly according to

the formalism developed in reference 7 that is enabled by the isomorphism

between reflection amplitude and SLD profile (as discussed in the text).

[Reprinted from N. F. Berk and C. F. Majkrzak, Langmuir 25, 4132 (2009),

Fig. 2.]

FIG. 2. SLD profile for a film system consisting of, from left to right, a rela-

tively thin Cr layer, an approximately 50 Å thick layer of Au, a protonated

alkane thiol layer, and a deuterated lipid layer adjacent to an aqueous reser-

voir (the substrate, either Si or Al2O3, is located on the left, below x¼ 0).

The effective spread of SLD values was generated by calculations for 100

model sample systems, assuming an incident intensity of 104 up to a maxi-

mum Q of 2.0 inverse Angstroms. The central white line represents the aver-

age SLD for the 100 model sample systems, <q>100, whereas the outer dark

lines indicate þ=� two estimated standard deviations. The units of the ab-

scissa and ordinate are Å and 10�6 Å�2, respectively. See Ref. 7 for a

detailed discussion of the computations. [Reprinted from N. F. Berk and C.

F. Majkrzak, Langmuir 25, 4132 (2009), Fig. 4.]

FIG. 3. Here are shown the effects of truncating the reflectivity data at vari-

ous values of maximum Q alone – i.e., without the degradation associated

with counting statistics. The units of the abscissa and ordinate are Å and

10�6 Å�2, respectively. Once again, see reference7 for a detailed discussion

of the computations involved which are enabled by the mathematical iso-

morphism between SLD and complex reflection amplitude. [Reprinted from

N. F. Berk and C. F. Majkrzak, Langmuir 25, 4132 (2009), Fig. 10.]
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physical meaning, and is straightforwardly identified, plot-

ting the two roots simultaneously reveals a symmetric pair of

oscillatory functions of Q which have coincident zero-

crossing points at predictable values of Q.29 If the imaginary

part of the reflection amplitude, Im r, as obtained from a

phase-sensitive specular neutron reflectivity measurement,

displays gaps between roots where zeros ought to occur, this

indicates the presence of inhomogeneous regions of different

SLD in plane that are of sufficient area as to make averaging

by the neutron wave packet impossible. Figure 4 shows sev-

eral sets of Im r obtained on films of a nominally similar sys-

tem, a supposed monolayer of alkane thiol on a Au layer

deposited on a Si substrate, but for different conditions of an

adjacent aqueous reservoir — namely, with and without the

presence of various concentrations and sizes of air bubbles.30

For a comprehensive analysis of this diagnostic tool, refer to

Ref. 29.

III. ROLE OF INTERFACIAL ROUGHNESS

It is, of course, important to deposit the film system of

interest on a sufficiently flat substrate support so as not to de-

grade the instrumental Q resolution. On the other hand, the

interfacial roughness on a more local length scale can have a

significant direct effect on the spatial resolution in the SLD

depth profile. Moreover, the magnitude of the reflected sig-

nal for a rough film falls off even more quickly than the

1=Q4 behavior for a perfectly sharp interface, potentially

limiting the maximum Q value attainable in an actual experi-

ment – and thereby indirectly limiting the spatial resolution.

Figure 5 shows a SLD profile for alpha-hemolysin embedded

in a lipid bilayer along with an illustration in real space of

the corresponding molecular structure.31 Model SLD depth

profiles for this system at various concentrations of the

alpha-hemolysin integral membrane protein are plotted in

Fig. 6. Figures 7 and 8 show the corresponding model reflec-

tivity data for the different coverages of the protein without

and with a given amount of interfacial roughness, respec-

tively. Clearly the degree of roughness can be a major factor

in achieving a desired spatial resolution in specular reflec-

tometry studies.

IV. ILLUSTRATIVE EXAMPLE: PHOTOVOLTAIC FILM

As an illustration of the sensitivity of NR for probing cur-

rent scientific and technical problems involving the nanostruc-

ture of thin film materials, consider the following example

from the ongoing development of organic photovoltaic thin

film devices. In particular, a system composed of a 1:1 by

weight blend of [6,6]-phenyl-C61-butyric acid methyl ester

(PCBM) nanoparticles and poly(3-hexylthiophene) (P3HT)

has recently been studied.32,33 NR is especially well-suited to

probe the morphology of these films because of the large

degree of scattering contrast possible between the two organic

components of the film system. Polymer-based solar cell

performance is largely determined by nanoscale structures

FIG. 4. (Color online) Several different plots Im

r(Q) vs Q for an alkane thiol, hybid bilayer

membrane (HBM) on a Au layer deposited on a

Si substrate adjacent to an aqueous reservoir

under different conditions of flow and bubble

formation. Also shown is a plot in the upper

right hand corner of the corresponding SLD pro-

files.30 Only data set number 1 appears suffi-

ciently homogeneous in the plane of the film on

a length scale over which the neutron wave

packet effectively averages, according to the cri-

terion based on the zeros of Im r(Q) (“X” indi-

cates an inhomogeneous case). The dimensions

of Q in the horizontal scale for the plots of Im

r(Q) are inverse Angstroms whereas the units

for z in the plot of the SLD are Angstroms. The

vertical axis in the SLD plot is in units of 10�6

Å�2. The incoherent reflection associated with

samples 2 and 3 introduces significant artifacts

in the SLD profile beyond what is caused by sta-

tistical uncertainty in and truncation of the

reflectivity data.

FIG. 5. (Color online) SLD profile for alpha hemolysin embedded in a lipid

bilayer along with an illustration in real space of the corresponding molecular

structure.31
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because the active layer exhibits relatively short exciton diffu-

sion lengths. This comes about because of the sufficiently

large Coulombic attraction between the photogenerated exci-

ton (bound electron-hole pair) which requires an interface to

promote dissociation. In addition, the large Coulombic attrac-

tion and inherent electrical properties of P3HT limit the exci-

ton diffusion length to approximately 5 to 10 nm prior to

recombination. The duality of length scales, i.e., roughly a

200 nm thickness requirement to accommodate typical photon

absorption of conducting polymers (the conducting polymer

generates the exciton upon absorption of light) and the 10 nm

exciton diffusion length (the exciton subsequently migrates to

the nanoparticle where dissociation occurs at the interface),

dictates that a comb-like structure would be ideal, although

other related, but more practically fabricated morphologies

have been suggested. It is crucial to understand what structure

actually results from a given fabrication process. Other techni-

ques, such as transmission electron microscopy (TEM), can

be insensitive to the morphology due to a lack of intrinsic con-

trast between the film components. In this case NR measure-

ments can be decisive.

A phase-sensitive measurement was carried out recently

on the specific organic photovoltaic film system mentioned

above.32,33 Figure 9 shows two composite reflectivity data

sets, one corresponding to the photovoltaic film in air, the

other with the same film adjacent to (and in direct contact

with) a reservoir of D2O (the air and D2O reservoir serve as

the two references required to obtain the phase information

associated with the photovoltaic film).

Also shown in Fig. 9 along with the composite system

reflectivity data sets are simultaneous fits. The data sets were

also directly analyzed to yield the real and imaginary parts of

the complex reflection amplitude corresponding to the photo-

voltaic film alone whose SLD depth profile is being sought.

Figure 10 shows the real part of the reflection amplitude, Re

r(Q), which was obtained from the composite reflectivity

data sets directly, without fitting or use of any adjustable

parameters.

In Fig. 11 are shown two SLD depth profiles for the pho-

tovoltaic film as obtained from the composite system NR data

sets: one obtained from a simultaneous fit of the two data

sets; and the other resulting from a direct, first-principles

inversion of the Re r(Q) curve of Fig. 10. The two results are

in good agreement, within the degree of uncertainty allowed

by the statistical error in the reflectivity data and the trunca-

tion at the maximum value of wavevector transfer Q. This

degree of consistency is remarkable and indicative of the in-

herent importance of the phase in identifying the unique,

physical SLD profile associated with the NR data.

Once again, the differences that do remain between the

SLD profile obtained by direct inversion and that deduced by

phase-sensitive simultaneous fits are indicative of the degree

of uncertainty in the NR data associated with statistical vari-

ation and truncation, as discussed above in the preceding

section. The resultant SLD profile for this particular sample

indicates a concentration of the PCBM nanoparticles at the

substrate as well as at the air interface. A possible PCBM-

P3HT morphology corresponding to this SLD profile is ren-

dered in the inset of Fig. 11.

FIG. 6. (Color online) Variations in a model SLD profile for a selection of

different concentrations of the protein. Interfacial roughnesses are included:

21.6 Å FWHM for the Cr=Au and 8.752 Å FWHM for each of the other

interfaces.

FIG. 7. (Color online) Corresponding model reflectivity data for the different

coverages of the protein shown in the SLD profile of Fig. 6 but without interfa-

cial roughness.

FIG. 8. (Color online) Corresponding model reflectivity data for the different

coverages of the protein shown in the SLD profile of Fig. 6 with interfacial

roughness included: 21.6 Å FWHM for Cr=Au and 8.752 Å FWHM for each

of the other interfaces. The interfacial roughness markedly reduces the reflec-

tivity signal at higher values of Q.
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If sufficient in-plane inhomogeneity is present in the

film, a question can be raised about whether its length scale

is such as to lead to a misinterpretation of the specular data

as discussed in Sec. II C. Figure 12 shows a plot of Im r(Q)

versus Q for another of the photovoltaic films examined in

this study which displays well-defined zeros that are indica-

tive of effective averaging of the neutron wave packet, as

discussed earlier [Im r(Q) for the film whose Re r(Q) is

shown in Fig. 10 is essentially of equivalent quality]. Thus,

in this regard, the SLD profile deduced is representative of a

single, in-plane average.

Another issue is the appearance of artifacts in the struc-

ture of the SLD profile arising from the truncation of the

reflectivity data, as indicated above in Fig. 3 of Sec. II B.

This is a particular concern at the edges of a rectangular pro-

file — in analogy with truncation of a Fourier series repre-

sentation of a rectangle which results in the appearance of

additional structure at the edges commonly known as the

Gibbs phenomenon. To investigate the possibility of such an

artifact being misinterpreted as a concentration of SLD at the

interfaces of the photovoltaic film, model calculations were

performed using the phase-inversion formalism [i.e., invert-

ing a model Re r(Q) to obtain the corresponding unique SLD

profile], as a function of maximum Q. The SLD profiles

obtained by inversion from model data sets — which were in

turn generated from corresponding SLD profiles, one for a

strictly rectangular shape and another close to that obtained

experimentally for the actual photovoltaic film — are

depicted in Fig. 13. For each of the two model SLD profiles

in Fig. 13, there corresponds two profiles, one obtained from

inversion of Re r(Q) for Q up to a maximum of 0.1 inverse

angstroms and the other for a maximum Q of 0.4. In either

case, the artifacts in SLD introduced by a finite cutoff of the

FIG. 9. (Color online) Two composite reflectivity data sets, one correspond-

ing to the photovoltaic film in air, the other with the same film adjacent to

(and in direct contact with) a reservoir of D2O (the air and D2O reservoir

serve as the two references required to obtain the phase information associ-

ated with the photovoltaic film).32,33 [Reprinted from J. W. Kiel, M. E.

Mackay, B. J. Kirby, B. B. Maranville, and C. F. Majkrzak, J. Chem. Phys.

133, 074902-1 (2010), Fig. 4(a).]

FIG. 10. (Color online) Real part of the reflection amplitude, Re r(Q), which

was obtained from the composite reflectivity data sets directly, without fit-

ting or use of any adjustable parameters. [Reprinted from J. W. Kiel, M. E.

Mackay, B. J. Kirby, B. B. Maranville, and C. F. Majkrzak, J. Chem. Phys.

133, 074902-1 (2010), Fig. 4(b).]

FIG. 11. (Color online) Two SLD depth profiles for the photovoltaic film as

obtained from the composite system NR data sets: one obtained from a si-

multaneous fit of the two data sets; and the other resulting from a direct,

first-principles inversion of the Re r(Q) curve of Fig. 10. The two results are

in good agreement within the degree of uncertainty allowed by the statistical

error in the reflectivity data and the truncation at the maximum value of

wavevector transfer Q. [Reprinted from J. W. Kiel, M. E. Mackay, B. J.

Kirby, B. B. Maranville, and C. F. Majkrzak, J. Chem. Phys. 133, 074902-1

(2010), Fig. 4(c).]

FIG. 12. (Color online) Plot of Im r(Q) vs Q for another of the photovoltaic

films examined in this study which displays well-defined zeros that are in-

dicative of effective averaging of the neutron wave packet. [Reprinted from

J. W. Kiel, M. E. Mackay, B. J. Kirby, B. B. Maranville, and C. F. Majkrzak,

J. Chem. Phys. 133, 074902-1 (2010), Fig. 6.]
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reflectivity data are negligible in comparison to the peaks in

SLD associated with a buildup of actual material at the inter-

faces. This provides further confidence that the SLD deduced

from the phase-sensitive NR measurements performed on

the photovoltaic film are physically meaningful.

The rather large PCBM concentration at the solid sub-

strate is undesirable because holes would be typically con-

ducted through it. It would be more advantageous to have an

inverted concentration profile with a larger PCBM concen-

tration at the air interface since it is an electron transporter.

The details of this study, including the implications of the

results on future development of organic photovoltaic films

can be found in references.32,33 What is clear is that NR has

a valuable role to play in determining the morphology of

such films produced by various fabrication processes.

V. INTERACTION-FREE MEASUREMENT

It is remarkable that specular neutron reflectometry meas-

urements can be so accurately described by the one-

dimensional Schroedinger wave equation, for both the

“forward” and “inverse” scattering problems, as discussed in

the previous sections of this paper. In describing the phase-

sensitive NR measurements, it was shown how surrounding

the sample object film with reference materials makes it possi-

ble to obtain more than simply the reflected intensity from the

object. In some sense we effectively modified the object in a

controlled and predetermined way so as to enable the extrac-

tion of crucial phase information corresponding to the original

object. What if we were to go yet a step further and immerse

the object of interest in something more than just surrounding

reference material, say in an interferometer —would it then

be possible to retrieve equivalent information in a statistically

more efficient manner? As alluded to in the Introduction and

discussed specifically in this section, the quantum phenom-

enon of “interaction free measurement” (IFM) may offer one

possible way of addressing such questions.

A. Introduction to interaction-free measurement

The idea of “interaction-free” measurement was intro-

duced decades ago by Renninger,8 Dicke,9 Elitzur and Vaid-

man10 and realized in rudimentary fashion by Kwiat et al.
with visible light.11 In the time since there has been a resur-

gence of interest in this phenomenon and additional papers

on the subject have been published. A good review of the

fundamental concepts and their implications, which also

includes experimental demonstrations, has been written by

Kwiat.34 The Scientific American article by Kwiat et al.35 is

also an excellent semi-quantitative exposition of the essen-

tial idea. The term “interaction-free” measurement is in a

sense a misnomer, however, and some objection has been

raised regarding this usage. As we will see in the discussion

below, within an interferometer in which an opaque object

blocks one of two possible paths, a nonabsorbed photon or

neutron can only have traveled the path without the object.

This does not imply the absence of a coupling term in the

Hamiltonian describing the system as a whole.34 What the

term IFM actually refers to is a situation wherein we learn

something about an object, e.g., its transmittivity, within a

device such as an interferometer from a probe, e.g., either a

photon or a neutron, which was not absorbed by the object.

It has been shown, both theoretically and experimen-

tally11,36,37 that the efficiency for detecting the presence of

an opaque object within an interferometer can be greater

than 50% (approaching unity under ideal conditions) if

another quantum phenomenon, the quantum Zeno effect, is

applied within the interferometer. The IFM idea has even

recently been explored for application to electron micros-

copy.38 Although much of the earlier published work on

IFM focused on opaque objects, the efficiency for measure-

ments of semitransparent objects (of much more general in-

terest) have been considered more recently.39–41 We present

here calculations that also deal with semitransparent objects,

but for the case of neutrons rather than light and with a spe-

cific interest in determining what the corresponding effi-

ciency would be for measuring any value of the transmission

(or equivalently the reflectivity), between 0 and 1, at a given

accuracy compared to that for a conventional measurement.

Although we consider transmission measurements, there is

essentially no difference in treating a specular reflection pro-

cess (in which neutrons are lost by elastic scattering rather

than absorption).

B. Interaction-free measurement of an opaque object
with a Mach-Zehnder interferometer

To begin our discussion, consider first the specific IFM

example presented by Kwiat et al.11,35 involving a “thought”

experiment with a Mach-Zehnder interferometer like that

depicted in Fig. 14. The splitting element divides a single

incident photon wavefunction into two equal parts, one of

which propagates along the upper route while the other fol-

lows the lower path. Upon coming together at the combining

element, interference between the two waves occurs, the

result of which is recorded in two detectors. The path lengths

and composition of the combining element have been chosen

so that one of the detectors, designated the “light” detector,

FIG. 13. (Color online) SLD profiles obtained by inversion from model data

sets — which were in turn generated from corresponding SLD profiles, one

for a strictly rectangular shape and another close to that obtained experimen-

tally for the actual photovoltaic film. See text for detailed discussion.

[Reprinted from J. W. Kiel, M. E. Mackay, B. J. Kirby, B. B. Maranville,

and C. F. Majkrzak, J. Chem. Phys. 133, 074902-1 (2010), Fig. 7(a).]
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records complete constructive interference whereas the other

“dark” detector registers only total destructive interference

(no photon). This setup is analogous to the double-slit appa-

ratus, with the “light” and “dark” detectors corresponding to

positions on the screen displaying the diffraction pattern

where light and dark bands are observed, respectively.

When a totally light-absorbing object is placed in the

upper path of the interferometer, the interference cannot

occur. Instead, the probability of a given photon being

absorbed by the object in the upper path is 50%. There is also

a 50% probability that a photon will reach the combiner via

the lower path. However, with no other wave present to inter-

fere with, it now has an equal chance of reaching either the

“light” or “dark” detector. (A fraction of a photon cannot be

absorbed by the object or registered in one of the detectors.)

If the photon registers in the “light” detector, we do not learn

whether or not an object is blocking the upper path — but if

the photon is registered in the “dark” detector, then we know

immediately and with certainty that the upper path must be

blocked. And this is accomplished with a photon that has not

interacted with the object in any conventional sense (no

exchange of momentum or energy and without absorption). It

is emphasized in reference 35 that this detection process,

while it works only some of the time (50% efficiency), when

it does work, it works completely. An actual experiment is

then described which was performed to verify that this really

happens.11,35

In order to improve the efficiency for this IFM process,

the application of another quantum phenomenon, the so-

called quantum Zeno effect, within an interferometer was

proposed.11 One manifestation of the quantum Zeno effect

uses a series of successive pairs of polarization rotators and

projection devices (polarizing material which selects out ei-

ther the horizontal or vertical component of the polarization

vector for photons or spin “þ” or “�” in the case of neu-

trons) that make it possible to inhibit the rotation of a pho-

ton’s or neutron’s polarization vector. This device can then

be used in conjunction with an interferometer to increase the

efficiency of the process for detecting a blocking object with

photons that never “see” it.11 In effect, the Zeno phenom-

enon creates a means of regulating the probability amplitude

of the photon along the interferometer path containing the

object, so as to affect the efficiency of the IFM. In the fol-

lowing sections we will consider the IFM process for the

more general case of a semitransparent object, which in prin-

ciple applies to typical transmission or reflectivity measure-

ments performed on material objects, including the types of

thin film systems of primary interest in this paper.

C. Interaction-free measurement of a semi-transparent
object with a Michelson interferometer

Consider now measuring the transmission of a semi-

transparent object via an interaction-free scheme that

employs a modified Michelson interferometer in which the

quantum Zeno effect can be applied. The principal goal is to

calculate the uncertainty in the measurement of the transmis-

sion function obtained in this way so that it can be compared

to that for a simple, conventional measurement of the trans-

mission. We will examine the case for polarized neutrons

here, in contrast to that for optical wavelength photons which

were used in Ref. 11 and other related papers on the subject.

To start, consider the schematic of the modified Michelson

interferometer depicted in Fig. 15.

One of the features which makes this Michelson interfer-

ometer slightly modified is the use of a pair of orthogonal

reflecting mirrors instead of the conventional single flat

pieces. The reason for doing this is to ensure that the reflected

neutron wave cannot travel back from where it came and

thereby allow the possibility of a standing wave state between

successive mirror elements. Another means to accomplish

this in the conventional Michelson configuration would be to

incline opposing mirrors at the ends of the interferometer a

relatively small degree away from parallel alignment. How-

ever, for our present purpose, doing so would cause progres-

sive displacement of the trajectories relative to the reflecting

elements for multiple circuits or loops within the interferome-

ter. Note also, as mentioned in the caption of Fig. 15, the

translational separation of spin “þ” and “�” paths below the

splitter is not real but depicted as such only for clarity of pre-

sentation — in fact, the two spin state paths overlap exactly

so that recombination of components can occur at the splitter.

Suppose a single neutron enters the interferometer from

the bottom through the “gate” mirror which can be opened to

FIG. 14. Mach-Zehnder type interferometer constructed of partially reflect-

ing films (indicated by the black horizontal bars). A neutron wavepacket

incident from the upper left is partially reflected and transmitted by the first

film or “splitter”. Again, considering the passage of a single neutron at a

time through the entire apparatus, there are two possible paths, upper and

lower. Upon reaching the last film element on the right, “partial” waves

from the two paths interfere and recombine via a coherent interaction

between the neutron wavefunctions and the material potential of the film. As

a result of the recombination, there are probabilities for detecting the neutron

at the end of either the upward or downward paths. Note that the shape of

the neutron wavepacket, as characterized by its longitudinal and lateral co-

herence lengths, parallel and perpendicular to its mean wavevector, respec-

tively, determines how the neutron interacts with the interferometer. The

path lengths and composition of the combining element have been chosen so

that one of the detectors, designated the “light” detector, records complete

constructive interference whereas the other “dark” detector registers only

total destructive interference (no photon). This set-up is analogous to the

double-slit apparatus, with the “light” and “dark” detectors corresponding to

positions on the screen displaying the diffraction pattern where light and

dark bands are observed, respectively. When a light absorbing object is

placed in the upper path of the interferometer, the interference cannot occur.

Instead, the probability of a given photon being absorbed by the object in

the upper path is 50%. There is also a 50% probability that a photon will

reach the combiner via the lower path.
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allow entry and then, subsequently, closed to trap the neutron

within the interferometer loop circuit. At some later time the

gate mirror can be opened again to allow that neutron to

escape, after one or more loops of the interferometer circuit,

to be detected outside of the interferometer (if it had not

been absorbed by the object in traversing the horizontal path

segment). An alternative, but equivalent, geometry can be

imagined where m successive stages, each stage or “unit

cell” representing one cycle, are arranged in series. In this

way of looking at it, the neutron enters one end, say from the

left, and exits the other, on the right, without the need for a

gate mirror. This view more explicitly separates space and

time in visualizing the system to be described by the time-

independent Schroedinger wave equation, i.e., in finding a

“stationary state” solution for the propagation of a neutron

through the interferometer m times. The Appendix offers a

concise treatment for this linear geometry.

Let us follow the “trajectory” of this one neutron within

the interferometer. We can describe the passage quantitatively

by writing down the wave function for each segment between

successive interferometer elements. For the time being, we

will represent a single neutron as a plane wave, with

wave vector k, which is a solution of the time-independent

Schroedinger equation of motion. Because we are dealing

with polarized neutrons, the wave function must have the

form of a two-component spinor, the evolution of which in

time and space is described by a pair of coupled, linear, sec-

ond order differential wave equations. Nonetheless, for the

analysis of the propagation of the neutron through the interfer-

ometer described here, it suffices to treat the two spin states

independently almost everywhere, each with a wave equation

of identical form, since no “spin-flip” potentials are present

within the apparatus except for the spin rotator device. How-

ever, for that part of the interferometer path passing through

the spin rotator, we are required to treat transitions between

spin states explicitly, which we will do.

Because the Schroedinger equation is linear, an appro-

priately weighted linear superposition of the stationary state

plane wave solutions (each with a different k value) of the

time-independent Schroedinger equation can be used, subse-

quently, to construct a wave packet solution of the time-

dependent Schroedinger equation. In practical circumstances

involving actual measurements with real interferometers, a

wavepacket representation of the neutron ensures sufficient

localization that the different possible “paths” through the in-

terferometer are effectively distinct as are successive optical

elements (e.g., mirrors) along a given path. On the other

hand, the fact that a single plane wave is also a legitimate so-

lution of the Schroedinger equation enables a great simplifi-

cation of the mathematical analysis. That is, we need deal

with only a single plane wave state knowing that the wave

packet solution is composed of a simple linear superposition

of plane wave states which are of identical form. Note that

the representation of the neutron by a single plane wave in

no way precludes the description of the division of the wave

function by a splitting device or of its later recombination

within the interferometer.

The general representation of the neutron for our present

purposes is a plane wave function spinor consisting of two

components corresponding to the pure “þ” and “�” distinct

“eigen” states relative to a quantization axis defined by a mag-

netic field along a particular direction in space. We have

selected this magnetic “guide” field to be along the z axis

which is normal to the plane of the interferometer schematic

shown in Fig. 15. The wave function W (a spinor) is written

as

w ¼ C0þ exp ikþrð Þ 1

0

� �
þ C0� exp ik�rð Þ 0

1

� �
: (1)

Since we need only talk about the propagation of the wave

along one straight section of path through the interferometer

at any time, we will always take “r” to be a direct measure

of distance along the direction of propagation of the neutron

wave as defined by its wavevector k. If k0 is the value of the

neutron wavevector in vacuum and nþ� is the neutron refrac-

tive index, which is a measure of the strength of interaction

between the neutron with matter (nuclear potential) and mag-

netic field, then kþ�¼ nþ� k0. It is assumed that these inter-

actions are at wavevector magnitudes sufficiently small that

matter appears continuous. Cþ and C� (as well as C0þ and

C0�) are, in general, complex numbers and represent the

FIG. 15. Modified (slightly) Michelson interferometer as described in detail

in the text. Above and to the left, the neutron is in one or the other pure spin

eigenstate, “þ” and “�”, respectively, (quantization axis defined by a mag-

netic “guide” field is along the z axis defined to be normal to the diagram)

whereas below the polarizing beam splitter the neutron can be in a mixed or

precessing polarization state. The separation of paths below the splitter is

not real and is shown this way only for clarity. Note that the polarization

component transmitted by the splitter never encounters the object.
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probability amplitudes for the neutron being in the “þ” or

“�” spin states, respectively. =Cþ=
2 and =C�=

2 represent the

respective probabilities of finding the neutron in the spin

“þ” or “�” state.

Assume that the neutron enters the interferometer circuit

for the first time, through the momentarily open lower gate

mirror, prepared to be in the pure “þ” spin state so that

C0�¼ 0. The neutron wave next encounters the polarization

rotator which consists of a relatively small region of space

within which exists a uniform magnetic field which is or-

thogonal to the magnetic guide field that exists everywhere

else in the interferometer. Further, this rotator field lies in

the plane of the interferometer schematic of Fig. 15 and is

perpendicular to the direction of propagation (k) of the neu-

tron wave. Recall that the polarization of the neutron plays

an essential role in the application of the quantum Zeno

effect to enhance the efficiency of the IFM.

A neutron polarization vector P¼ (Px, Py, Pz) with

three rectangular components can be defined in real space in

terms of two angles or, alternatively, the spinor coefficients

Cþ and C�. To determine how Cþ and C� change under a

rotation of the polarization vector P, a rotation operator can

be defined in terms of the Pauli spin matrices and applied to

the neutron spinor wave function. We will apply the spin

rotation operator to describe how the coefficients Cþ� of the

spinor wave function transform in traversing the polarization

rotator inside the interferometer.

The spin rotation device inside the interferometer is a

region of uniform magnetic field orthogonal to that which

exists everywhere else in the interferometer. The axis of

rotation is taken to be parallel to the y axis (and perpendicu-

lar to the neutron direction of propagation along the x axis).

Over some distance x in a magnetic field of strength B ori-

ented along the y axis, the direction of the initial polarization

rotates through an angle e about the y axis. The angle of rota-

tion e is related to the strength of the magnetic field within

and the distance traveled through the rotator (the magnetic

field strength can be expressed in terms of the difference in

the refractive indices for spinþ and� in that field).

For that rotation from Pi¼Piz along the z axis through

an angle e about the y axis, Cþ and C� thus transform

(denoting initial and final states by “I” and “F”, respectively)

according to the following:

CFþ ¼ cos e=2ð ÞCIþ � sin e=2ð ÞCI�

CFþ ¼ sin e=2ð ÞCIþ þ cos e=2ð ÞCI�
: (2)

After passing through the polarization rotator, the wave func-

tion now has nonzero values of Cþ and C�.

The neutron wave next encounters the polarizing splitter

which transmits with 100% efficiency theþ spin state while

reflecting the� spin state with 100% probability. For all of

the other mirrors in the interferometer, we will assume the

reflectivity to be unity regardless of neutron spin. Without

affecting any essential aspects of the interaction-free measure-

ment process, we can assume that the various interferometer

path lengths can be adjusted such that for both kþ� values the

argument of the exponential corresponding to the spatial

phase shift is an integer multiple of 2p. Note that for this

condition to be realized for both kþ- over the path segments

which are common to both spinþ and�wavefunctions,

namely between the lower gate mirror and the polarizing split-

ter, the magnitude of the magnetic guide field must also be

adjusted such that [(k�� kþ) r]¼ 2np. We further assume

that it is possible to select mirrors and splitter in conjunction

with, if necessary, nonabsorbing phase shifting materials

placed in the paths so that the mirrors and splitter do not intro-

duce any net phase shifts themselves, i.e., each element has an

effective /¼ 2np.

With these simplifications, the wave function can be

readily constructed at any point along the path through a cir-

cuit of the interferometer. Denoting “F” as the final wave-

function state and “ j” the number of the cycle within the

closed loop of the interferometer, the wavefunction after,

say, three complete cycles can be written as

wF j¼3¼ C3 � 2CS2t� CS2t2
� � 1

0

� �

þt SC2 � S3tþ SC2tþ SC2t2
� � 0

1

� � (3)

where

C ¼ cos e=2ð Þ and S ¼ sin e=2ð Þ

and t is the transmission amplitude (in general a complex

quantity characterized by a modulus and phase angle) of the

object. Keep in mind that the wavefunction is a probability

amplitude, the complex square of which represents the prob-

ability of finding the neutron at the corresponding location

within the interferometer at some point in a given cycle.

Note that the complex square of the wavefunction no longer

equals unity if the transmission of the object in the path is

less than one, which means that there is some chance that the

neutron gets absorbed by the object.

In order to obtain information about the transmission

=t=2 of the object through this interaction-free measurement

scheme, we ultimately need to let the neutron, if it has not

been absorbed by the object, exit the interferometer after

j¼m cycles through the lower gate mirror. The information

about =t=2 is contained in the complex square of the wave-

function. To obtain such information requires that we repeat

the “experiment” (with given number of cycles m) for some

number of times (one neutron at a time). The probabilities

for and number of neutrons emerging in either the

spinþ or� state after m nominal cycles through the interfer-

ometer circuit (including the possibility of transmission

through an object) are related as follows (NI¼ number of

neutrons originally allowed to enter the interferometer):

NFþ=� ¼ wFþ=�

��� ��� 2NI ¼ Fþ=�NI (4)

where NF¼NFþþNF� includes the numbers of neutrons

detected emerging from the interferometer in theþ and� spin

states, respectively. If NA is the number of neutrons which

were absorbed by the object, then NF¼NI�NA. The differ-

ence D in measured numbers of spin þ, Nþ, and spin �, N�,
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neutrons is proportional to the polarization Pz of the collection

or “beam” of emerging neutrons. Proper normalization is

obtained by dividing this difference by the total number of

neutrons emerging regardless of spin state.

We can now relate the transmission of the object =t=2 to

the measured difference D betweenþ and� neutrons (or the

normalized polarization) emerging from the closed-loop in-

terferometer after m potential cycles. This relation is, how-

ever, relatively complicated, the degree of complexity

increasing with the number of cycles m, as can be seen from

Eq. (3) for m¼ 3. (We can, however, easily check the result

for m¼3 in the limiting cases at t¼ 0 and 1. Choosing the

incremental rotation angle to be p=3 (as in Ref. 34) for

m¼ 3, we find for t¼ 0 that NFþ¼ 0.422 N0, NF�¼ 0, and

Pz¼þ1 whereas for t¼ 1 we have NFþ¼ 0, NF�¼N0, and

Pz¼�1. This is as should be expected. Similarly, for m¼ 1,

the expression for T¼ =t=2 reduces to NF� = N0 which is

exactly the conventional expression since NFþ¼ 0 in this

case.)

Despite the complicated analytic equation for m >=¼ 2,

we can, accurately and straightforwardly determine the rela-

tionship between the difference D (or polarization) and

object transmission for any m numerically, through the use

of a relatively simple recursive algorithm. In each cycle, the

incident wavefunction is first subjected to the rotation opera-

tor, modified by the effect of transmission through the object,

and, lastly, the resulting or final wave function for that cycle

becomes the initial wavefunction for the subsequent cycle.

We will employ such a strategy to compare the measurement

of the transmission of an object done in a conventional man-

ner with that done via the interaction-free apparatus we have

been discussing here. To this end, we will make one further

simplification, which, once again, does not sacrifice any of

the essential behavior of the IFM method but simplifies the

mathematical computations significantly. This simplification

is to take the transmission t to be a real number, meaning

only that the phase shift in transmission happens to be some

integer multiple of 2p.

Let us then ask what value of NI is required such that the

measurement of the difference in final spin state populations,

D, after m cycles through an IFM apparatus as we have

described here for a particular object transmission =t=,2 is

resolvable from that for a transmission value of =t=2þD=t=2

(e.g., D=t=2 = =t=2¼ 0.01 or D=t=2¼ 0.01 =t=2). Using the

criteria that one standard deviation is sufficient to separate

two neighboring normal distributions, we can write the con-

dition for resolution in terms of the number of neutrons NI

which must be sent through the interferometer (each to

undergo, potentially, m cycles before exiting — if not

absorbed by the object). In other words, the RHS of Eq. (7)

below contains the number NI of incident neutrons [see also

Equation (4) above] required to enable the resolution of the

two neighboring difference values D corresponding to t and

tþ dt appearing on the LHS (recall that the quantity Fþ=� is

defined in Eq. (4) to be the square of the final wavefunction):

D ¼ NFþ � NF�; (5)

DD ¼ sqrt NFþ þ NF�ð Þ; (6)

NFþðtÞ � NF�ðtÞ½ � � NFþ tþ dtð Þ � NF� tþ dtð Þ½ �
¼ sqrt NFþðtÞ � NF�ðtÞ½ �; (7)

NI ¼ Fþ þ F�ð Þ= Fþ � F�ð Þ � Fdþ � Fd�ð Þ½ �2; (8)

where we have assumed that NI for D(t) is negligibly differ-

ent than that for D(tþ dt).
We now have the relationships we need to ask what

number of neutrons NI must be run through the IFM device,

configured for m cycles, to be able to measure a semitrans-

parent object’s transmission T¼ =t=2 with an accuracy

DT¼D=t=.2 From NI we can also retrieve NA, the number of

neutrons actually absorbed by the object in the process.

However, before presenting and discussing results of the

computations outlined above for an IFM, let us first express

the uncertainty associated with a conventional measurement

of the transmission of neutrons through an object so that a

comparison may also be made.

D. Conventional transmission measurement

The formulas for a conventional transmission measure-

ment and its corresponding uncertainty are given by the fol-

lowing [=tc=
2¼Tc is the conventional transmission where NF

and NI are the numbers of transmitted (final) and incident

neutrons, respectively]:

tcj j2¼ NF=NI ¼ Tc; (9)

NI ¼ Tc 1þ Tcð Þ= DTcð Þ2: (10)

Note that just as in the IFM case, we can ask what number

of incident neutrons NI are required to achieve a given level

of accuracy in the measurement of the transmission =t=,2

for example, as specified by the fractional uncertainty DT
= T¼D=t=2 = =t=.2

E. Interaction-free versus conventional transmission
measurement

The results of the calculations described in the two pre-

ceding sections are summarized in the following three Figs.

16, 17, and 18.

We can check the IFM expressions analytically for NF

and related quantities in the limiting cases at t¼ 0 and 1. For

example, choosing the incremental rotation angle to be p=3

(as in Ref. 34) for m¼ 3, we find for t¼ 0 that NFþ¼ 0.422

No, NF�¼ 0, and Pz¼þ1 whereas for t¼ 1 we have

NFþ¼ 0, NF�¼N0, and Pz¼�1. In the conventional trans-

mission measurement case, for Tc¼ 1.0, NIc¼ 20,000. and

for Tc¼ 0.005 (first point in Figs. 16 and 17, and 18),

NIc¼ 2,010,000. (using the appropriate equation given above

for the conventional transmission measurement case).

In summary, it appears that insofar as the number of

neutrons needed for a measurement of the transmission with

a given accuracy are concerned, the IFM technique does not

outperform the conventional measurement method for all

values of the object’s transmission. The IFM behaves simi-

larly regarding the number of neutrons absorbed by the
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object. For relatively low values of the transmission of the

object, the IFM method does not appear to be an advantage.

Unfortunately, it is for these low values of the transmission

where the conventional measurement technique also requires

the most incident and absorbed numbers of neutrons to

achieve a given accuracy. (For measurements of an object’s

reflectivity, the lower the reflectivity, the more neutrons

would be needed.) For transmission values approaching

unity, on the other hand, IFM does appear to offer some

advantage over a conventional measurement. However, even

for values of the transmission where the IFM technique

could be of advantage over conventional methods of mea-

surement, there remains the formidable task, for neutrons

and x-rays at least, of finding a practical method of perform-

ing the inter-action free measurement (note that most of the

experimental realizations of IFM done thus far have been for

optical wavelength photons).

VI. CONCLUSIONS

In addition to the more obvious (but still important) ele-

ments affecting the sensitivity of specular neutron reflectom-

etry as a probe of thin film nanostructure — such as source

strength, incoherent scattering background, and optimization

of instrumental Q resolution — several other factors can

have a significant impact. We have discussed a number of

these, including the crucial role that phase information plays

in obtaining unambiguous SLD depth profiles — not only

through the phase-inversion process itself, but by making it

possible to obtain information regarding the in-plane homo-

geneity of the sample. Phase-inversion also enables accurate,

quantitative analysis of the uncertainty associated with a

SLD profile deduced from actual NR data which possesses

statistical noise and covers only a finite range of Q. We also

discussed how interfacial roughness further limits the spatial

resolution which can be achieved.

As an illustration of the sensitivity of NR in a current

application in materials science, a study involving an organic

photovoltaic film system was examined. In this investigation

of the film’s morphology, phase-inversion methods were

applied to determine the SLD profile and the distribution of

two essential molecular components. The SLD so determined

FIG. 16. (Color online) Number of neutrons NI (square symbols), as a func-

tion of transmission through a semi-transparent object, required to achieve

an uncertainty of 1% in the transmission (DT = T¼ 0.01) for m¼ 100 cycles

through the interferometer in an interaction-free measurement as described

in the text. The circles indicate the corresponding number of neutrons

absorbed by the semitransparent object in the process. The incremental turn

angle e of the polarization in each of the m cycles is given by the prescrip-

tion of Kwiat et al.11 to be p = m. For comparison, the number of incident

neutrons required and associated number absorbed by the object for a con-

ventional transmission experiment are given by the solid and dashed lines,

respectively. Interestingly, IFM is markedly inferior to conventional mea-

surement up to transmission values of about 0.65 – insofar as the number of

incident neutrons required and corresponding number absorbed are con-

cerned. Note, however, that at a transmission approaching zero, the ratio of

NI=NA> 10 for an IFM whereas it is unity for a conventional measurement.

FIG. 17. (Color online) Number of incident neutrons NI, as a function of

transmission through a semi-transparent object, required to achieve 1% frac-

tional uncertainty in the transmission (DT = T). The solid line is for the con-

ventional measurement case whereas the results for the interaction-free

approach are given for various values of cycles m, as indicated in the legend

in the upper right-hand corner of the plot. In terms of the number of neutrons

needed, the efficiency of the IFM technique varies as a function of the num-

ber of cycles m at a given transmission value.

FIG. 18. (Color online) Number of neutrons absorbed NA, as a function of

transmission through a semi-transparent object, in the process of achieving a

1% fractional uncertainty in the transmission (DT = T). The solid line is for

the conventional measurement case whereas the results for the interaction-

free approach are given for various values of cycles m, as indicated in the

legend in the upper right-hand corner of the plot. Insofar as number of neu-

trons absorbed by the object is concerned, the efficiency of the IFM tech-

nique varies as a function of the number of cycles m at a given transmission

value.
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is unequivocal to within the degree allowed by the statistical

uncertainty and Q range of the measured reflectivity data.

Such nanometer scale structural information could not have

been obtained by any other means currently available, includ-

ing electron microscopy techniques.

Finally, the possible application of the quantum phe-

nomenon of “interaction-free” measurement to neutron re-

flectometry was considered. A measuring apparatus such as

an interferometer can be viewed as an intricate but well-

defined sample environment, one that is more complicated

than that created by a simple reference medium surrounding

the sample, as is presently employed in the phase-inversion

method. The possibility of whether some IFM of neutron

transmission through (or reflection from) an object within

such a device could be performed with better efficiency at a

given accuracy than by conventional means was considered.

Although it appears that for a certain range of transmission

(reflectivity) values an IFM might be advantageous, there

remains the not insignificant problem of constructing a prac-

tical instrument with which to perform such a measurement.

Nonetheless, it can be argued that the question of how IFM

phenomena might be profitably applied to NR warrants fur-

ther study.

APPENDIX: ALTERNATIVE DESCRIPTION OF THE
SENSITIVITY OF THE INTERACTION-FREE
MEASUREMENT

We give an alternative derivation of the IFM spin polar-

ization device discussed above, which some readers may

find helpful. As in the main text, we assume here that spa-

tially dependent phases have been chosen to cancel out, so

that the instrument acts solely on spin.

As mentioned in the text, for analytical purposes, the

cyclic arrangement for the measurement may be envisioned

as a linear arrangement in which each cycle is a binary

choice stage, and a set of cycles corresponds to a “piecewise

continuous” set of consecutive stages. The input to the de-

vice is characterized by the spinor (we use arrows here,

instead of þ=�)

w0 ¼
w0"
w0#

� �

and the output after n cycles by the spinor

wn ¼
wn"
wn#

� �
¼ Mn w0"

w0#

� �
; (A1)

where M is the single-stage “transfer matrix”,

M ¼ cos h� sin h
t sin h t cos h

� �
(A2)

h¼ p = 2n¼ e = 2 is the spinor rotation angle (half the spin

rotation angle) for each stage, and t is the sample transmis-

sion. The top row of M corresponds to paths that are trans-

mitted by the beam splitter and thus do not “see” the sample,

while the bottom row accounts for the possibility of paths

reflected by the splitter to the leg of the instrument contain-

ing the sample. Thus for t¼ 1 (perfect transmitter), Mn sim-

ply rotates the input spinor by p. For t¼ 0 (perfect absorber),

wn:¼ (cos h)n w0: and wn;¼ (sin h)n w0;, so that wn; goes

to zero and wn:� [1- O (n�1)] w0: as n approaches infinity.

That is, as t goes to zero, the device becomes a perfect polar-

izer—for any neutrons that emerge from it.

For a polarized incident neutron, the output polarization

along the z axis after n cycles is

Pz n; tð Þ ¼ wn"
�� ��2� wn#

�� ��2h i
= wn"
�� ��2þ wn#

�� ��2h i
¼ pn" � pn#

(A3)

as in the text. In Fig. 19 we show Pzðn; tÞ for several n and

take notice of its sigmoidal shape, the “knee” of which

sharpens and moves toward t approaching 1 with increasing

n. In both Figs. 19 and 20, we take w0:¼ 1 and w0;¼ 0.

In Fig. 20 we show the effect of this shape on the deter-

mination of t from measured polarizations using N neutrons,

simulated by using the binomial probability function Bðp;NÞ

FIG. 19. (Color online) Pzðn; tÞ vs t for several n, showing the evolution of

the sigmoidal shape with n. The dotted line shows t¼ 0.81; n¼ 10 is a good

choice for measuring this value with IFM.

FIG. 20. (Color online) Determinations of t by IFM for several t – n pairs,

using 10 runs, each with 200 neutrons. Thick horizontal lines terminate on

measured t – values for each Pz measurement, simulated using the Binomial

probability distribution appropriate to the given t – n pairs (see text.) Pairs

of vertical lines demark t þ=� 0.01 for comparison with the actual spread.

In particular, for the 0.9 – 20 pair, all the IFM variations of t lie well within

the std. err. for Pz.
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for the theoretical up and down probabilities p¼ pn: and

p¼ pn; from Eq. (A3). It is easy to see that when the number

of cycles n is chosen to make the knee of the sigmoid fall

near the actual value of t, a position corresponding to Pz� 0,

the measurement of t is relatively insensitive to the statistical

1=
ffiffiffiffi
N
p

fluctuations of the polarizations measured in n cycles

of the instrument; i.e., the sensitivity to t is high. In fact, we

see that then the spread in measured t is comparable to or

less than t þ=� 0.01 for sufficiently large n and t not too

large or small.

On the other hand, as the edge of the sigmoid broadens

or moves away from the location of actual t, fluctuations in

measured t can significantly exceed fluctuations in measured

Pz. In particular, for values of t near zero (strong absorbers),

there is no value of n which places t at a sharp edge of

Pzðn; tÞ. Roughly speaking, this can be stated in the follow-

ing way. We “know” a strong absorber is present, because

few neutrons emerge from the instrument, all with nearly the

incident polarization, but we cannot accurately measure t� 0

because too few neutrons emerge for the purpose, and the

larger we make n, the worse this incommensurability gets.

The importance of a “good” t – n pair is clearly illustrated in

Fig. 20 by comparing the cases n¼ 2 and 10 for t¼ 0.5.

A simple argument may help to bring out the character

of the sensitivity that was derived in detail in the main text.

Let P stand for Pz, and begin with the trivial identity

dP ¼ ðdP=dtÞdt. Then, dt¼ dP = (dP = dt) goes to jDtj
� jDPj= jdP = dtj where Dt and DP refer now to measured
quantities, but dP=dt signifies the slope of the theoretical sig-

moidal polarization function. Then it is obvious that the sen-

sitivity of the instrument varies inversely with the slope of P
near the true value of t. Sensitivity to t is highest when n is

chosen to make t intercept Pz near the center of the sigmoidal

knee, corresponding to Pz � 0 for a completely polarized

incident beam.
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